Annotated Ada Reference Manual (Ada 202y Draft 1)Legal Information
Contents   Index   References   Search   Previous   Next 

G.3.1 Real Vectors and Matrices

Static Semantics

1/2
{AI95-00296-01} {AI95-00418-01} The generic library package Numerics.Generic_Real_Arrays has the following declaration: 
2/5
{AI12-0241-1} generic
   type Real is digits <>;
package Ada.Numerics.Generic_Real_Arrays
   with Pure, Nonblocking is
3/2
   -- Types
4/2
   type Real_Vector is array (Integer range <>) of Real'Base;
   type Real_Matrix is array (Integer range <>, Integer range <>)
                                                   of Real'Base;
5/2
   -- Subprograms for Real_Vector types
6/2
   -- Real_Vector arithmetic operations
7/2
   function "+"   (Right : Real_Vector)       return Real_Vector;
   function "-"   (Right : Real_Vector)       return Real_Vector;
   function "abs" (Right : Real_Vector)       return Real_Vector;
8/2
   function "+"   (Left, Right : Real_Vector) return Real_Vector;
   function "-"   (Left, Right : Real_Vector) return Real_Vector;
9/2
   function "*"   (Left, Right : Real_Vector) return Real'Base;
10/2
   function "abs" (Right : Real_Vector)       return Real'Base;
11/2
   -- Real_Vector scaling operations
12/2
   function "*" (Left : Real'Base;   Right : Real_Vector)
      return Real_Vector;
   function "*" (Left : Real_Vector; Right : Real'Base)
      return Real_Vector;
   function "/" (Left : Real_Vector; Right : Real'Base)
      return Real_Vector;
13/2
   -- Other Real_Vector operations
14/2
   function Unit_Vector (Index : Integer;
                         Order : Positive;
                         First : Integer := 1) return Real_Vector;
15/2
   -- Subprograms for Real_Matrix types
16/2
   -- Real_Matrix arithmetic operations
17/2
   function "+"       (Right : Real_Matrix) return Real_Matrix;
   function "-"       (Right : Real_Matrix) return Real_Matrix;
   function "abs"     (Right : Real_Matrix) return Real_Matrix;
   function Transpose (X     : Real_Matrix) return Real_Matrix;
18/2
   function "+" (Left, Right : Real_Matrix) return Real_Matrix;
   function "-" (Left, Right : Real_Matrix) return Real_Matrix;
   function "*" (Left, Right : Real_Matrix) return Real_Matrix;
19/2
   function "*" (Left, Right : Real_Vector) return Real_Matrix;
20/2
   function "*" (Left : Real_Vector; Right : Real_Matrix)
      return Real_Vector;
   function "*" (Left : Real_Matrix; Right : Real_Vector)
      return Real_Vector;
21/2
   -- Real_Matrix scaling operations
22/2
   function "*" (Left : Real'Base;   Right : Real_Matrix)
      return Real_Matrix;
   function "*" (Left : Real_Matrix; Right : Real'Base)
      return Real_Matrix;
   function "/" (Left : Real_Matrix; Right : Real'Base)
      return Real_Matrix;
23/2
   -- Real_Matrix inversion and related operations
24/2
   function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector;
   function Solve (A, X : Real_Matrix) return Real_Matrix;
   function Inverse (A : Real_Matrix) return Real_Matrix;
   function Determinant (A : Real_Matrix) return Real'Base;
25/2
   -- Eigenvalues and vectors of a real symmetric matrix
26/2
   function Eigenvalues (A : Real_Matrix) return Real_Vector;
27/2
   procedure Eigensystem (A       : in  Real_Matrix;
                          Values  : out Real_Vector;
                          Vectors : out Real_Matrix);
28/2
   -- Other Real_Matrix operations
29/2
   function Unit_Matrix (Order            : Positive;
                         First_1, First_2 : Integer := 1)
                                            return Real_Matrix;
30/2
end Ada.Numerics.Generic_Real_Arrays;
31/2
{AI95-00296-01} The library package Numerics.Real_Arrays is declared pure and defines the same types and subprograms as Numerics.Generic_Real_Arrays, except that the predefined type Float is systematically substituted for Real'Base throughout. Nongeneric equivalents for each of the other predefined floating point types are defined similarly, with the names Numerics.Short_Real_Arrays, Numerics.Long_Real_Arrays, etc. 
31.a/2
Reason: The nongeneric equivalents are provided to allow the programmer to construct simple mathematical applications without being required to understand and use generics, and to be consistent with other Numerics packages. 
32/2
{AI95-00296-01} Two types are defined and exported by Numerics.Generic_Real_Arrays. The composite type Real_Vector is provided to represent a vector with components of type Real; it is defined as an unconstrained, one-dimensional array with an index of type Integer. The composite type Real_Matrix is provided to represent a matrix with components of type Real; it is defined as an unconstrained, two-dimensional array with indices of type Integer.
33/2
{AI95-00296-01} The effect of the various subprograms is as described below. In most cases the subprograms are described in terms of corresponding scalar operations of the type Real; any exception raised by those operations is propagated by the array operation. Moreover, the accuracy of the result for each individual component is as defined for the scalar operation unless stated otherwise.
34/2
{AI95-00296-01} In the case of those operations which are defined to involve an inner product, Constraint_Error may be raised if an intermediate result is outside the range of Real'Base even though the mathematical final result would not be.
35/2
function "+"   (Right : Real_Vector) return Real_Vector;
function "-"   (Right : Real_Vector) return Real_Vector;
function "abs" (Right : Real_Vector) return Real_Vector;
36/2
{AI95-00296-01} Each operation returns the result of applying the corresponding operation of the type Real to each component of Right. The index range of the result is Right'Range.
37/2
function "+" (Left, Right : Real_Vector) return Real_Vector;
function "-" (Left, Right : Real_Vector) return Real_Vector;
38/2
{AI95-00296-01} Each operation returns the result of applying the corresponding operation of the type Real to each component of Left and the matching component of Right. The index range of the result is Left'Range. Constraint_Error is raised if Left'Length is not equal to Right'Length.
39/2
function "*" (Left, Right : Real_Vector) return Real'Base;
40/2
{AI95-00296-01} This operation returns the inner product of Left and Right. Constraint_Error is raised if Left'Length is not equal to Right'Length. This operation involves an inner product.
41/2
function "abs" (Right : Real_Vector) return Real'Base;
42/2
{AI95-00418-01} This operation returns the L2-norm of Right (the square root of the inner product of the vector with itself).
42.a/2
Discussion: Normalization of vectors is a frequent enough operation that it is useful to provide the norm as a basic operation. Furthermore, implementing the norm is not entirely straightforward, because the inner product might overflow while the final norm does not. An implementation cannot merely return Sqrt (X * X), it has to cope with a possible overflow of the inner product. 
42.b/2
Implementation Note: While the definition is given in terms of an inner product, the norm doesn't “involve an inner product” in the technical sense. The reason is that it has accuracy requirements substantially different from those applicable to inner products; and that cancellations cannot occur, because all the terms are positive, so there is no possibility of intermediate overflow.
43/2
function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector;
44/2
{AI95-00296-01} This operation returns the result of multiplying each component of Right by the scalar Left using the "*" operation of the type Real. The index range of the result is Right'Range.
45/2
function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector;
46/2
{AI95-00296-01} Each operation returns the result of applying the corresponding operation of the type Real to each component of Left and to the scalar Right. The index range of the result is Left'Range.
47/2
function Unit_Vector (Index : Integer;
                      Order : Positive;
                      First : Integer := 1) return Real_Vector;
48/2
{AI95-00296-01} This function returns a unit vector with Order components and a lower bound of First. All components are set to 0.0 except for the Index component which is set to 1.0. Constraint_Error is raised if Index < First, Index > First + Order – 1 or if First + Order – 1 > Integer'Last.
49/2
function "+"   (Right : Real_Matrix) return Real_Matrix;
function "-"   (Right : Real_Matrix) return Real_Matrix;
function "abs" (Right : Real_Matrix) return Real_Matrix;
50/2
{AI95-00296-01} Each operation returns the result of applying the corresponding operation of the type Real to each component of Right. The index ranges of the result are those of Right.
51/2
function Transpose (X : Real_Matrix) return Real_Matrix;
52/2
{AI95-00296-01} This function returns the transpose of a matrix X. The first and second index ranges of the result are X'Range(2) and X'Range(1) respectively.
53/2
function "+" (Left, Right : Real_Matrix) return Real_Matrix;
function "-" (Left, Right : Real_Matrix) return Real_Matrix;
54/2
{AI95-00296-01} Each operation returns the result of applying the corresponding operation of the type Real to each component of Left and the matching component of Right. The index ranges of the result are those of Left. Constraint_Error is raised if Left'Length(1) is not equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).
55/2
function "*" (Left, Right : Real_Matrix) return Real_Matrix;
56/2
{AI95-00296-01} This operation provides the standard mathematical operation for matrix multiplication. The first and second index ranges of the result are Left'Range(1) and Right'Range(2) respectively. Constraint_Error is raised if Left'Length(2) is not equal to Right'Length(1). This operation involves inner products.
57/2
function "*" (Left, Right : Real_Vector) return Real_Matrix;
58/2
{AI95-00296-01} This operation returns the outer product of a (column) vector Left by a (row) vector Right using the operation "*" of the type Real for computing the individual components. The first and second index ranges of the result are Left'Range and Right'Range respectively.
59/2
function "*" (Left : Real_Vector; Right : Real_Matrix) return Real_Vector;
60/2
{AI95-00296-01} This operation provides the standard mathematical operation for multiplication of a (row) vector Left by a matrix Right. The index range of the (row) vector result is Right'Range(2). Constraint_Error is raised if Left'Length is not equal to Right'Length(1). This operation involves inner products.
61/2
function "*" (Left : Real_Matrix; Right : Real_Vector) return Real_Vector;
62/2
{AI95-00296-01} This operation provides the standard mathematical operation for multiplication of a matrix Left by a (column) vector Right. The index range of the (column) vector result is Left'Range(1). Constraint_Error is raised if Left'Length(2) is not equal to Right'Length. This operation involves inner products.
63/2
function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix;
64/2
{AI95-00296-01} This operation returns the result of multiplying each component of Right by the scalar Left using the "*" operation of the type Real. The index ranges of the result are those of Right.
65/2
function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;
function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix;
66/2
{AI95-00296-01} Each operation returns the result of applying the corresponding operation of the type Real to each component of Left and to the scalar Right. The index ranges of the result are those of Left.
67/2
function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector;
68/2
{AI95-00296-01} This function returns a vector Y such that X is (nearly) equal to A * Y. This is the standard mathematical operation for solving a single set of linear equations. The index range of the result is A'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2), and X'Length are not equal. Constraint_Error is raised if the matrix A is ill-conditioned.
68.a/2
Discussion: The text says that Y is such that “X is (nearly) equal to A * Y” rather than “X is equal to A * Y” because rounding errors may mean that there is no value of Y such that X is exactly equal to A * Y. On the other hand it does not mean that any old rough value will do. The algorithm given under Implementation Advice should be followed.
68.b/2
The requirement to raise Constraint_Error if the matrix is ill-conditioned is really a reflection of what will happen if the matrix is ill-conditioned. See Implementation Advice. We do not make any attempt to define ill-conditioned formally.
68.c/2
These remarks apply to all versions of Solve and Inverse. 
69/2
function Solve (A, X : Real_Matrix) return Real_Matrix;
70/2
{AI95-00296-01} This function returns a matrix Y such that X is (nearly) equal to A * Y. This is the standard mathematical operation for solving several sets of linear equations. The index ranges of the result are A'Range(2) and X'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2), and X'Length(1) are not equal. Constraint_Error is raised if the matrix A is ill-conditioned.
71/2
function Inverse (A : Real_Matrix) return Real_Matrix;
72/2
{AI95-00296-01} This function returns a matrix B such that A * B is (nearly) equal to the unit matrix. The index ranges of the result are A'Range(2) and A'Range(1). Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). Constraint_Error is raised if the matrix A is ill-conditioned.
73/2
function Determinant (A : Real_Matrix) return Real'Base;
74/2
{AI95-00296-01} This function returns the determinant of the matrix A. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2).
75/2
function Eigenvalues(A : Real_Matrix) return Real_Vector;
76/2
{AI95-00296-01} This function returns the eigenvalues of the symmetric matrix A as a vector sorted into order with the largest first. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2). The index range of the result is A'Range(1). Argument_Error is raised if the matrix A is not symmetric.
77/2
procedure Eigensystem(A       : in  Real_Matrix;
                      Values  : out Real_Vector;
                      Vectors : out Real_Matrix);
78/3
{AI95-00296-01} {AI05-0047-1} This procedure computes both the eigenvalues and eigenvectors of the symmetric matrix A. The out parameter Values is the same as that obtained by calling the function Eigenvalues. The out parameter Vectors is a matrix whose columns are the eigenvectors of the matrix A. The order of the columns corresponds to the order of the eigenvalues. The eigenvectors are normalized and mutually orthogonal (they are orthonormal), including when there are repeated eigenvalues. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2), or if Values'Range is not equal to A'Range(1), or if the index ranges of the parameter Vectors are not equal to those of A. Argument_Error is raised if the matrix A is not symmetric. Constraint_Error is also raised in implementation-defined circumstances if the algorithm used does not converge quickly enough.
78.a/3
Ramification: {AI05-0047-1} There is no requirement on the absolute direction of the returned eigenvectors. Thus they might be multiplied by -1. It is only the ratios of the components that matter. This is standard practice. 
79/2
function Unit_Matrix (Order            : Positive;
                      First_1, First_2 : Integer := 1) return Real_Matrix;
80/2
{AI95-00296-01} This function returns a square unit matrix with Order**2 components and lower bounds of First_1 and First_2 (for the first and second index ranges respectively). All components are set to 0.0 except for the main diagonal, whose components are set to 1.0. Constraint_Error is raised if First_1 + Order – 1 > Integer'Last or First_2 + Order – 1 > Integer'Last.

Implementation Requirements

81/2
{AI95-00296-01} Accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem are implementation defined. 
81.a/2
Implementation defined: The accuracy requirements for the subprograms Solve, Inverse, Determinant, Eigenvalues and Eigensystem for type Real_Matrix.
82/2
For operations not involving an inner product, the accuracy requirements are those of the corresponding operations of the type Real in both the strict mode and the relaxed mode (see G.2).
83/2
For operations involving an inner product, no requirements are specified in the relaxed mode. In the strict mode the modulus of the absolute error of the inner product X*Y shall not exceed g*abs(X)*abs(Y) where g is defined as 
84/2
g = X'Length * Real'Machine_Radix**(1 – Real'Model_Mantissa)
85/2
{AI95-00418-01} For the L2-norm, no accuracy requirements are specified in the relaxed mode. In the strict mode the relative error on the norm shall not exceed g / 2.0 + 3.0 * Real'Model_Epsilon where g is defined as above.
85.a/2
Reason: This is simply the combination of the error on the inner product with the error on Sqrt. A first order computation would lead to 2.0 * Real'Model_Epsilon above, but we are adding an extra Real'Model_Epsilon to account for higher order effects.

Documentation Requirements

86/2
{AI95-00296-01} Implementations shall document any techniques used to reduce cancellation errors such as extended precision arithmetic. 
86.a/2
Documentation Requirement: Any techniques used to reduce cancellation errors in Numerics.Generic_Real_Arrays shall be documented.
86.b/2
Implementation Note: The above accuracy requirement is met by the canonical implementation of the inner product by multiplication and addition using the corresponding operations of type Real'Base and performing the cumulative addition using ascending indices. Note however, that some hardware provides special operations for the computation of the inner product and although these may be fast they may not meet the accuracy requirement specified. See Accuracy and Stability of Numerical Algorithms By N J Higham (ISBN 0-89871-355-2), Section 3.1.
86.c/3
{AI05-0047-1} Note moreover that the componentwise accuracy requirements are not met by subcubic methods for matrix multiplication such as that devised by Strassen. These methods, which are typically used for the fast multiplication of very large matrices (that is, order more than a few thousands), have normwise accuracy properties. If it is desired to use such methods, then distinct subprograms should be provided (perhaps in a child package). See Section 22.2.2 in the above reference. 

Implementation Permissions

87/5
{AI95-00296-01} {AI12-0444-1} The nongeneric equivalent packages can be actual instantiations of the generic package for the appropriate predefined type, though that is not required.

Implementation Advice

88/3
{AI95-00296-01} {AI05-0264-1} Implementations should implement the Solve and Inverse functions using established techniques such as LU decomposition with row interchanges followed by back and forward substitution. Implementations are recommended to refine the result by performing an iteration on the residuals; if this is done, then it should be documented. 
88.a/2
Implementation Advice: Solve and Inverse for Numerics.Generic_Real_Arrays should be implemented using established techniques such as LU decomposition and the result should be refined by an iteration on the residuals.
89/2
It is not the intention that any special provision should be made to determine whether a matrix is ill-conditioned or not. The naturally occurring overflow (including division by zero) which will result from executing these functions with an ill-conditioned matrix and thus raise Constraint_Error is sufficient. 
89.a/2
Discussion: There isn't any advice for the implementation to document with this paragraph. 
90/2
The test that a matrix is symmetric should be performed by using the equality operator to compare the relevant components. 
90.a/2
Implementation Advice: The equality operator should be used to test that a matrix in Numerics.Generic_Real_Arrays is symmetric.
91/3
{AI05-0047-1} An implementation should minimize the circumstances under which the algorithm used for Eigenvalues and Eigensystem fails to converge. 
91.a.1/3
Implementation Advice: An implementation should minimize the circumstances under which the algorithm used for Numerics.Generic_Real_Arrays.Eigenvalues and Numerics.Generic_Real_Arrays.Eigensystem fails to converge.
91.a/3
Implementation Note: J. H. Wilkinson is the acknowledged expert in this area. See for example Wilkinson, J. H., and Reinsch, C. , Linear Algebra , vol II of Handbook for Automatic Computation, Springer-Verlag, or Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press. 

Extensions to Ada 95

91.b/2
{AI95-00296-01} The package Numerics.Generic_Real_Arrays and its nongeneric equivalents are new. 

Wording Changes from Ada 2005

91.c/3
{AI05-0047-1} Correction: Corrected various accuracy and definition issues.

Contents   Index   References   Search   Previous   Next 
Ada-Europe Ada 2005 and 2012 Editions sponsored in part by Ada-Europe