G.3.2 Complex Vectors and Matrices
Static Semantics
The generic library 
package Numerics.Generic_Complex_Arrays has the following declaration: 
with Ada.Numerics.Generic_Real_Arrays, Ada.Numerics.Generic_Complex_Types;
generic
   with package Real_Arrays   
is new
      Ada.Numerics.Generic_Real_Arrays   (<>);
   
use Real_Arrays;
   
with package Complex_Types 
is new
      Ada.Numerics.Generic_Complex_Types (Real);
   
use Complex_Types;
package Ada.Numerics.Generic_Complex_Arrays 
is
   pragma Pure(Generic_Complex_Arrays);
 
   -- Types
   type Complex_Vector 
is array (Integer 
range <>) 
of Complex;
   
type Complex_Matrix 
is array (Integer 
range <>,
                                 Integer 
range <>) 
of Complex;
 
   -- Subprograms for Complex_Vector types
   -- Complex_Vector selection, conversion and composition operations
   function Re (X : Complex_Vector) 
return Real_Vector;
   
function Im (X : Complex_Vector) 
return Real_Vector;
 
   procedure Set_Re (X  : 
in out Complex_Vector;
                     Re : 
in     Real_Vector);
   
procedure Set_Im (X  : 
in out Complex_Vector;
                     Im : 
in     Real_Vector);
 
   function Compose_From_Cartesian (Re     : Real_Vector)
      
return Complex_Vector;
   
function Compose_From_Cartesian (Re, Im : Real_Vector)
      
return Complex_Vector;
 
   function Modulus  (X     : Complex_Vector) 
return Real_Vector;
   
function "
abs"    (Right : Complex_Vector) 
return Real_Vector
                                                 
renames Modulus;
   
function Argument (X     : Complex_Vector) 
return Real_Vector;
   
function Argument (X     : Complex_Vector;
                      Cycle : Real'Base)      
return Real_Vector;
 
   function Compose_From_Polar (Modulus, Argument : Real_Vector)
      
return Complex_Vector;
   
function Compose_From_Polar (Modulus, Argument : Real_Vector;
                                Cycle             : Real'Base)
      
return Complex_Vector;
 
   -- Complex_Vector arithmetic operations
   function "+"       (Right  : Complex_Vector) 
return Complex_Vector;
   
function "-"       (Right  : Complex_Vector) 
return Complex_Vector;
   
function Conjugate (X      : Complex_Vector) 
return Complex_Vector;
 
   function "+"  (Left, Right : Complex_Vector) return Complex_Vector;
   function "-"  (Left, Right : Complex_Vector) return Complex_Vector;
   function "*"  (Left, Right : Complex_Vector) return Complex;
   function "abs"     (Right : Complex_Vector) return Real'Base;
   -- Mixed Real_Vector and Complex_Vector arithmetic operations
   function "+" (Left  : Real_Vector;
                 Right : Complex_Vector) return Complex_Vector;
   function "+" (Left  : Complex_Vector;
                 Right : Real_Vector)    return Complex_Vector;
   function "-" (Left  : Real_Vector;
                 Right : Complex_Vector) return Complex_Vector;
   function "-" (Left  : Complex_Vector;
                 Right : Real_Vector)    return Complex_Vector;
   function "*" (Left  : Real_Vector;    Right : Complex_Vector)
      return Complex;
   function "*" (Left  : Complex_Vector; Right : Real_Vector)
      return Complex;
   -- Complex_Vector scaling operations
   function "*" (Left  : Complex;
                 Right : Complex_Vector) return Complex_Vector;
   function "*" (Left  : Complex_Vector;
                 Right : Complex)        return Complex_Vector;
   function "/" (Left  : Complex_Vector;
                 Right : Complex)        return Complex_Vector;
   function "*" (Left  : Real'Base;
                 Right : Complex_Vector) return Complex_Vector;
   function "*" (Left  : Complex_Vector;
                 Right : Real'Base)      return Complex_Vector;
   function "/" (Left  : Complex_Vector;
                 Right : Real'Base)      return Complex_Vector;
   -- Other Complex_Vector operations
   function Unit_Vector (Index : Integer;
                         Order : Positive;
                         First : Integer := 1) 
return Complex_Vector;
 
   -- Subprograms for Complex_Matrix types
   -- Complex_Matrix selection, conversion and composition operations
   function Re (X : Complex_Matrix) 
return Real_Matrix;
   
function Im (X : Complex_Matrix) 
return Real_Matrix;
 
   procedure Set_Re (X  : 
in out Complex_Matrix;
                     Re : 
in     Real_Matrix);
   
procedure Set_Im (X  : 
in out Complex_Matrix;
                     Im : 
in     Real_Matrix);
 
   function Compose_From_Cartesian (Re     : Real_Matrix)
      
return Complex_Matrix;
   
function Compose_From_Cartesian (Re, Im : Real_Matrix)
      
return Complex_Matrix;
 
   function Modulus  (X     : Complex_Matrix) 
return Real_Matrix;
   
function "
abs"    (Right : Complex_Matrix) 
return Real_Matrix
                                                 
renames Modulus;
 
   function Argument (X     : Complex_Matrix) 
return Real_Matrix;
   
function Argument (X     : Complex_Matrix;
                      Cycle : Real'Base)      
return Real_Matrix;
 
   function Compose_From_Polar (Modulus, Argument : Real_Matrix)
      
return Complex_Matrix;
   
function Compose_From_Polar (Modulus, Argument : Real_Matrix;
                                Cycle             : Real'Base)
      
return Complex_Matrix;
 
   -- Complex_Matrix arithmetic operations
   function "+"       (Right : Complex_Matrix) 
return Complex_Matrix;
   
function "-"       (Right : Complex_Matrix) 
return Complex_Matrix;
   
function Conjugate (X     : Complex_Matrix) 
return Complex_Matrix;
   
function Transpose (X     : Complex_Matrix) 
return Complex_Matrix;
 
   function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
   function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;
   function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;
   function "*" (Left, Right : Complex_Vector) return Complex_Matrix;
   function "*" (Left  : Complex_Vector;
                 Right : Complex_Matrix) return Complex_Vector;
   function "*" (Left  : Complex_Matrix;
                 Right : Complex_Vector) return Complex_Vector;
   -- Mixed Real_Matrix and Complex_Matrix arithmetic operations
   function "+" (Left  : Real_Matrix;
                 Right : Complex_Matrix) return Complex_Matrix;
   function "+" (Left  : Complex_Matrix;
                 Right : Real_Matrix)    return Complex_Matrix;
   function "-" (Left  : Real_Matrix;
                 Right : Complex_Matrix) return Complex_Matrix;
   function "-" (Left  : Complex_Matrix;
                 Right : Real_Matrix)    return Complex_Matrix;
   function "*" (Left  : Real_Matrix;
                 Right : Complex_Matrix) return Complex_Matrix;
   function "*" (Left  : Complex_Matrix;
                 Right : Real_Matrix)    return Complex_Matrix;
   function "*" (Left  : Real_Vector;
                 Right : Complex_Vector) return Complex_Matrix;
   function "*" (Left  : Complex_Vector;
                 Right : Real_Vector)    return Complex_Matrix;
   function "*" (Left  : Real_Vector;
                 Right : Complex_Matrix) return Complex_Vector;
   function "*" (Left  : Complex_Vector;
                 Right : Real_Matrix)    return Complex_Vector;
   function "*" (Left  : Real_Matrix;
                 Right : Complex_Vector) return Complex_Vector;
   function "*" (Left  : Complex_Matrix;
                 Right : Real_Vector)    return Complex_Vector;
   -- Complex_Matrix scaling operations
   function "*" (Left  : Complex;
                 Right : Complex_Matrix) return Complex_Matrix;
   function "*" (Left  : Complex_Matrix;
                 Right : Complex)        return Complex_Matrix;
   function "/" (Left  : Complex_Matrix;
                 Right : Complex)        return Complex_Matrix;
   function "*" (Left  : Real'Base;
                 Right : Complex_Matrix) return Complex_Matrix;
   function "*" (Left  : Complex_Matrix;
                 Right : Real'Base)      return Complex_Matrix;
   function "/" (Left  : Complex_Matrix;
                 Right : Real'Base)      return Complex_Matrix;
   -- Complex_Matrix inversion and related operations
   function Solve (A : Complex_Matrix; X : Complex_Vector)
      
return Complex_Vector;
   
function Solve (A, X : Complex_Matrix) 
return Complex_Matrix;
   
function Inverse (A : Complex_Matrix) 
return Complex_Matrix;
   
function Determinant (A : Complex_Matrix) 
return Complex;
 
   -- Eigenvalues and vectors of a Hermitian matrix
   function Eigenvalues(A : Complex_Matrix) 
return Real_Vector;
 
   procedure Eigensystem(A       : 
in  Complex_Matrix;
                         Values  : 
out Real_Vector;
                         Vectors : 
out Complex_Matrix);
 
   -- Other Complex_Matrix operations
   function Unit_Matrix (Order            : Positive;
                         First_1, First_2 : Integer := 1)
                                            
return Complex_Matrix;
 
end Ada.Numerics.Generic_Complex_Arrays;
 The library package Numerics.Complex_Arrays 
is declared pure and defines the same types and subprograms as Numerics.Generic_Complex_Arrays, 
except that the predefined type Float is systematically substituted for 
Real'Base, and the Real_Vector and Real_Matrix types exported by Numerics.Real_Arrays 
are systematically substituted for Real_Vector and Real_Matrix, and the 
Complex type exported by Numerics.Complex_Types is systematically substituted 
for Complex, throughout. Nongeneric equivalents for each of the other 
predefined floating point types are defined similarly, with the names 
Numerics.Short_Complex_Arrays, Numerics.Long_Complex_Arrays, etc.
 
 Two types are defined and exported by Numerics.Generic_Complex_Arrays. 
The composite type Complex_Vector is provided to represent a vector with 
components of type Complex; it is defined as an unconstrained one-dimensional 
array with an index of type Integer. The composite type Complex_Matrix 
is provided to represent a matrix with components of type Complex; it 
is defined as an unconstrained, two-dimensional array with indices of 
type Integer.
 The effect of the various subprograms is as described 
below. In many cases they are described in terms of corresponding scalar 
operations in Numerics.Generic_Complex_Types. Any exception raised by 
those operations is propagated by the array subprogram. Moreover, any 
constraints on the parameters and the accuracy of the result for each 
individual component are as defined for the scalar operation.
 In the case of those operations which are defined 
to 
involve an inner product, Constraint_Error may be raised if 
an intermediate result has a component outside the range of Real'Base 
even though the final mathematical result would not.
 
function Re (X : Complex_Vector) return Real_Vector;
function Im (X : Complex_Vector) return Real_Vector;
Each function returns a vector of the specified 
Cartesian components of X. The index range of the result is X'Range.
procedure Set_Re (X  : in out Complex_Vector; Re : in Real_Vector);
procedure Set_Im (X  : in out Complex_Vector; Im : in Real_Vector);
Each procedure replaces the specified (Cartesian) 
component of each of the components of X by the value of the matching 
component of Re or Im; the other (Cartesian) component of each of the 
components is unchanged. Constraint_Error is raised if X'Length is not 
equal to Re'Length or Im'Length.
function Compose_From_Cartesian (Re     : Real_Vector)
   return Complex_Vector;
function Compose_From_Cartesian (Re, Im : Real_Vector)
   return Complex_Vector;
Each function constructs a vector of Complex results 
(in Cartesian representation) formed from given vectors of Cartesian 
components; when only the real components are given, imaginary components 
of zero are assumed. The index range of the result is Re'Range. Constraint_Error 
is raised if Re'Length is not equal to Im'Length.
function Modulus  (X     : Complex_Vector) return Real_Vector;
function "abs"    (Right : Complex_Vector) return Real_Vector
                                              renames Modulus;
function Argument (X     : Complex_Vector) return Real_Vector;
function Argument (X     : Complex_Vector;
                   Cycle : Real'Base)      return Real_Vector;
Each function calculates and returns a vector 
of the specified polar components of X or Right using the corresponding 
function in numerics.generic_complex_types. The index range of the result 
is X'Range or Right'Range.
function Compose_From_Polar (Modulus, Argument : Real_Vector)
   return Complex_Vector;
function Compose_From_Polar (Modulus, Argument : Real_Vector;
                             Cycle             : Real'Base)
   return Complex_Vector;
Each function constructs a vector of Complex results 
(in Cartesian representation) formed from given vectors of polar components 
using the corresponding function in numerics.generic_complex_types on 
matching components of Modulus and Argument. The index range of the result 
is Modulus'Range. Constraint_Error is raised if Modulus'Length is not 
equal to Argument'Length.
function "+" (Right : Complex_Vector) return Complex_Vector;
function "-" (Right : Complex_Vector) return Complex_Vector;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of Right. The index range of the result is Right'Range.
function Conjugate (X : Complex_Vector) return Complex_Vector;
This function returns the result of applying the 
appropriate function Conjugate in numerics.generic_complex_types to each 
component of X. The index range of the result is X'Range.
function "+" (Left, Right : Complex_Vector) return Complex_Vector;
function "-" (Left, Right : Complex_Vector) return Complex_Vector;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of Left and the matching component of Right. The index range 
of the result is Left'Range. Constraint_Error is raised if Left'Length 
is not equal to Right'Length.
function "*" (Left, Right : Complex_Vector) return Complex;
This operation returns the inner product of Left 
and Right. Constraint_Error is raised if Left'Length is not equal to 
Right'Length. This operation involves an inner product.
function "abs" (Right : Complex_Vector) return Real'Base;
This operation returns the Hermitian L2-norm of 
Right (the square root of the inner product of the vector with its conjugate).
function "+" (Left  : Real_Vector;
              Right : Complex_Vector) return Complex_Vector;
function "+" (Left  : Complex_Vector;
              Right : Real_Vector)    return Complex_Vector;
function "-" (Left  : Real_Vector;
              Right : Complex_Vector) return Complex_Vector;
function "-" (Left  : Complex_Vector;
              Right : Real_Vector)    return Complex_Vector;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of Left and the matching component of Right. The index range 
of the result is Left'Range. Constraint_Error is raised if Left'Length 
is not equal to Right'Length.
function "*" (Left : Real_Vector;    Right : Complex_Vector) return Complex;
function "*" (Left : Complex_Vector; Right : Real_Vector)    return Complex;
Each operation returns the inner product of Left 
and Right. Constraint_Error is raised if Left'Length is not equal to 
Right'Length. These operations involve an inner product.
function "*" (Left : Complex; Right : Complex_Vector) return Complex_Vector;
This operation returns the result of multiplying 
each component of Right by the complex number Left using the appropriate 
operation "*" in numerics.generic_complex_types. The index 
range of the result is Right'Range.
function "*" (Left : Complex_Vector; Right : Complex) return Complex_Vector;
function "/" (Left : Complex_Vector; Right : Complex) return Complex_Vector;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of the vector Left and the complex number Right. The index 
range of the result is Left'Range.
function "*" (Left : Real'Base;
              Right : Complex_Vector) return Complex_Vector;
This operation returns the result of multiplying 
each component of Right by the real number Left using the appropriate 
operation "*" in numerics.generic_complex_types. The index 
range of the result is Right'Range.
function "*" (Left : Complex_Vector;
              Right : Real'Base) return Complex_Vector;
function "/" (Left : Complex_Vector;
              Right : Real'Base) return Complex_Vector;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of the vector Left and the real number Right. The index range 
of the result is Left'Range.
function Unit_Vector (Index : Integer;
                      Order : Positive;
                      First : Integer := 1) return Complex_Vector;
This function returns a 
unit vector 
with Order components and a lower bound of First. All components are 
set to (0.0, 0.0) except for the Index component which is set to (1.0, 
0.0). Constraint_Error is raised if Index < First, Index > First 
+ Order – 1, or if First + Order – 1 > Integer'Last.
 
function Re (X : Complex_Matrix) return Real_Matrix;
function Im (X : Complex_Matrix) return Real_Matrix;
Each function returns a matrix of the specified 
Cartesian components of X. The index ranges of the result are those of 
X.
procedure Set_Re (X : in out Complex_Matrix; Re : in Real_Matrix);
procedure Set_Im (X : in out Complex_Matrix; Im : in Real_Matrix);
Each procedure replaces the specified (Cartesian) 
component of each of the components of X by the value of the matching 
component of Re or Im; the other (Cartesian) component of each of the 
components is unchanged. Constraint_Error is raised if X'Length(1) is 
not equal to Re'Length(1) or Im'Length(1) or if X'Length(2) is not equal 
to Re'Length(2) or Im'Length(2).
function Compose_From_Cartesian (Re     : Real_Matrix)
   return Complex_Matrix;
function Compose_From_Cartesian (Re, Im : Real_Matrix)
   return Complex_Matrix;
Each function constructs a matrix of Complex results 
(in Cartesian representation) formed from given matrices of Cartesian 
components; when only the real components are given, imaginary components 
of zero are assumed. The index ranges of the result are those of Re. 
Constraint_Error is raised if Re'Length(1) is not equal to Im'Length(1) 
or Re'Length(2) is not equal to Im'Length(2).
function Modulus  (X     : Complex_Matrix) return Real_Matrix;
function "abs"    (Right : Complex_Matrix) return Real_Matrix
                                              renames Modulus;
function Argument (X     : Complex_Matrix) return Real_Matrix;
function Argument (X     : Complex_Matrix;
                   Cycle : Real'Base)      return Real_Matrix;
Each function calculates and returns a matrix 
of the specified polar components of X or Right using the corresponding 
function in numerics.generic_complex_types. The index ranges of the result 
are those of X or Right.
function Compose_From_Polar (Modulus, Argument : Real_Matrix)
   return Complex_Matrix;
function Compose_From_Polar (Modulus, Argument : Real_Matrix;
                             Cycle             : Real'Base)
   return Complex_Matrix;
Each function constructs a matrix of Complex results 
(in Cartesian representation) formed from given matrices of polar components 
using the corresponding function in numerics.generic_complex_types on 
matching components of Modulus and Argument. The index ranges of the 
result are those of Modulus. Constraint_Error is raised if Modulus'Length(1) 
is not equal to Argument'Length(1) or Modulus'Length(2) is not equal 
to Argument'Length(2).
function "+" (Right : Complex_Matrix) return Complex_Matrix;
function "-" (Right : Complex_Matrix) return Complex_Matrix;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of Right. The index ranges of the result are those of Right.
function Conjugate (X : Complex_Matrix) return Complex_Matrix;
This function returns the result of applying the 
appropriate function Conjugate in numerics.generic_complex_types to each 
component of X. The index ranges of the result are those of X.
function Transpose (X : Complex_Matrix) return Complex_Matrix;
This function returns the transpose of a matrix 
X. The first and second index ranges of the result are X'Range(2) and 
X'Range(1) respectively.
function "+" (Left, Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left, Right : Complex_Matrix) return Complex_Matrix;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of Left and the matching component of Right. The index ranges 
of the result are those of Left. Constraint_Error is raised if Left'Length(1) 
is not equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).
function "*" (Left, Right : Complex_Matrix) return Complex_Matrix;
This operation provides the standard mathematical 
operation for matrix multiplication. The first and second index ranges 
of the result are Left'Range(1) and Right'Range(2) respectively. Constraint_Error 
is raised if Left'Length(2) is not equal to Right'Length(1). This operation 
involves inner products.
function "*" (Left, Right : Complex_Vector) return Complex_Matrix;
This operation returns the outer product of a 
(column) vector Left by a (row) vector Right using the appropriate operation 
"*" in numerics.generic_complex_types for computing the individual 
components. The first and second index ranges of the result are Left'Range 
and Right'Range respectively.
function "*" (Left  : Complex_Vector;
              Right : Complex_Matrix) return Complex_Vector;
This operation provides the standard mathematical 
operation for multiplication of a (row) vector Left by a matrix Right. 
The index range of the (row) vector result is Right'Range(2). Constraint_Error 
is raised if Left'Length is not equal to Right'Length(1). This operation 
involves inner products.
function "*" (Left  : Complex_Matrix;
              Right : Complex_Vector) return Complex_Vector;
This operation provides the standard mathematical 
operation for multiplication of a matrix Left by a (column) vector Right. 
The index range of the (column) vector result is Left'Range(1). Constraint_Error 
is raised if Left'Length(2) is not equal to Right'Length. This operation 
involves inner products.
function "+" (Left  : Real_Matrix;
              Right : Complex_Matrix) return Complex_Matrix;
function "+" (Left  : Complex_Matrix;
              Right : Real_Matrix)    return Complex_Matrix;
function "-" (Left  : Real_Matrix;
              Right : Complex_Matrix) return Complex_Matrix;
function "-" (Left  : Complex_Matrix;
              Right : Real_Matrix)    return Complex_Matrix;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of Left and the matching component of Right. The index ranges 
of the result are those of Left. Constraint_Error is raised if Left'Length(1) 
is not equal to Right'Length(1) or Left'Length(2) is not equal to Right'Length(2).
function "*" (Left  : Real_Matrix;
              Right : Complex_Matrix) return Complex_Matrix;
function "*" (Left  : Complex_Matrix;
              Right : Real_Matrix)    return Complex_Matrix;
Each operation provides the standard mathematical 
operation for matrix multiplication. The first and second index ranges 
of the result are Left'Range(1) and Right'Range(2) respectively. Constraint_Error 
is raised if Left'Length(2) is not equal to Right'Length(1). These operations 
involve inner products.
function "*" (Left  : Real_Vector;
              Right : Complex_Vector) return Complex_Matrix;
function "*" (Left  : Complex_Vector;
              Right : Real_Vector)    return Complex_Matrix;
Each operation returns the outer product of a 
(column) vector Left by a (row) vector Right using the appropriate operation 
"*" in numerics.generic_complex_types for computing the individual 
components. The first and second index ranges of the result are Left'Range 
and Right'Range respectively.
function "*" (Left  : Real_Vector;
              Right : Complex_Matrix) return Complex_Vector;
function "*" (Left  : Complex_Vector;
              Right : Real_Matrix)    return Complex_Vector;
Each operation provides the standard mathematical 
operation for multiplication of a (row) vector Left by a matrix Right. 
The index range of the (row) vector result is Right'Range(2). Constraint_Error 
is raised if Left'Length is not equal to Right'Length(1). These operations 
involve inner products.
function "*" (Left  : Real_Matrix;
              Right : Complex_Vector) return Complex_Vector;
function "*" (Left  : Complex_Matrix;
              Right : Real_Vector)    return Complex_Vector;
Each operation provides the standard mathematical 
operation for multiplication of a matrix Left by a (column) vector Right. 
The index range of the (column) vector result is Left'Range(1). Constraint_Error 
is raised if Left'Length(2) is not equal to Right'Length. These operations 
involve inner products.
function "*" (Left : Complex; Right : Complex_Matrix) return Complex_Matrix;
This operation returns the result of multiplying 
each component of Right by the complex number Left using the appropriate 
operation "*" in numerics.generic_complex_types. The index 
ranges of the result are those of Right.
function "*" (Left : Complex_Matrix; Right : Complex) return Complex_Matrix;
function "/" (Left : Complex_Matrix; Right : Complex) return Complex_Matrix;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of the matrix Left and the complex number Right. The index 
ranges of the result are those of Left.
function "*" (Left : Real'Base;
              Right : Complex_Matrix) return Complex_Matrix;
This operation returns the result of multiplying 
each component of Right by the real number Left using the appropriate 
operation "*" in numerics.generic_complex_types. The index 
ranges of the result are those of Right.
function "*" (Left : Complex_Matrix;
              Right : Real'Base) return Complex_Matrix;
function "/" (Left : Complex_Matrix;
              Right : Real'Base) return Complex_Matrix;
Each operation returns the result of applying 
the corresponding operation in numerics.generic_complex_types to each 
component of the matrix Left and the real number Right. The index ranges 
of the result are those of Left.
function Solve (A : Complex_Matrix; X : Complex_Vector) return Complex_Vector;
This function returns a vector Y such that X is 
(nearly) equal to A * Y. This is the standard mathematical operation 
for solving a single set of linear equations. The index range of the 
result is A'Range(2). Constraint_Error is raised if A'Length(1), A'Length(2), 
and X'Length are not equal. Constraint_Error is raised if the matrix 
A is ill-conditioned.
function Solve (A, X : Complex_Matrix) return Complex_Matrix;
This function returns a matrix Y such that X is 
(nearly) equal to A * Y. This is the standard mathematical operation 
for solving several sets of linear equations. The index ranges of the 
result are A'Range(2) and X'Range(2). Constraint_Error is raised if A'Length(1), 
A'Length(2), and X'Length(1) are not equal. Constraint_Error is raised 
if the matrix A is ill-conditioned.
function Inverse (A : Complex_Matrix) return Complex_Matrix;
This function returns a matrix B such that A * 
B is (nearly) equal to the unit matrix. The index ranges of the result 
are A'Range(2) and A'Range(1). Constraint_Error is raised if A'Length(1) 
is not equal to A'Length(2). Constraint_Error is raised if the matrix 
A is ill-conditioned.
function Determinant (A : Complex_Matrix) return Complex;
This function returns the determinant of the matrix 
A. Constraint_Error is raised if A'Length(1) is not equal to A'Length(2).
function Eigenvalues(A : Complex_Matrix) return Real_Vector;
This function returns the eigenvalues of the Hermitian 
matrix A as a vector sorted into order with the largest first. Constraint_Error 
is raised if A'Length(1) is not equal to A'Length(2). The index range 
of the result is A'Range(1). Argument_Error is raised if the matrix A 
is not Hermitian.
procedure Eigensystem(A       : in  Complex_Matrix;
                      Values  :  out Real_Vector;
                      Vectors :  out Complex_Matrix);
This procedure computes both the eigenvalues and 
eigenvectors of the Hermitian matrix A. The out parameter Values is the 
same as that obtained by calling the function Eigenvalues. The out parameter 
Vectors is a matrix whose columns are the eigenvectors of the matrix 
A. The order of the columns corresponds to the order of the eigenvalues. 
The eigenvectors are mutually orthonormal, including when there are repeated 
eigenvalues. Constraint_Error is raised if A'Length(1) is not equal to 
A'Length(2), or if Values'Range is not equal to A'Range(1), or if the 
index ranges of the parameter Vectors are not equal to those of A. Argument_Error 
is raised if the matrix A is not Hermitian. Constraint_Error is also 
raised in implementation-defined circumstances if the algorithm used 
does not converge quickly enough.
function Unit_Matrix (Order            : Positive;
                      First_1, First_2 : Integer := 1)
                                         return Complex_Matrix;
This function returns a square 
unit matrix 
with Order**2 components and lower bounds of First_1 and First_2 (for 
the first and second index ranges respectively). All components are set 
to (0.0, 0.0) except for the main diagonal, whose components are set 
to (1.0, 0.0). Constraint_Error is raised if First_1 + Order – 
1 > Integer'Last or First_2 + Order – 1 > Integer'Last.
 
Implementation Requirements
  Accuracy requirements for the subprograms Solve, 
Inverse, Determinant, Eigenvalues and Eigensystem are implementation 
defined. 
  For operations not involving an inner product, 
the accuracy requirements are those of the corresponding operations of 
the type Real'Base and Complex in both the strict mode and the relaxed 
mode (see 
G.2).
 
  For operations involving an inner product, no requirements 
are specified in the relaxed mode. In the strict mode the modulus of 
the absolute error of the inner product X*Y shall not exceed 
g*abs(X)*abs(Y) where g is 
defined as 
g = X'Length * Real'Machine_Radix**(1 – Real'Model_Mantissa)
    for mixed complex and real operands
g = sqrt(2.0) * X'Length * Real'Machine_Radix**(1 – Real'Model_Mantissa)
    for two complex operands
  For the L2-norm, no accuracy requirements are specified 
in the relaxed mode. In the strict mode the relative error on the norm 
shall not exceed g / 2.0 + 3.0 * Real'Model_Epsilon where g 
has the definition appropriate for two complex operands.
Documentation Requirements
  Implementations shall document any techniques used 
to reduce cancellation errors such as extended precision arithmetic. 
Implementation Permissions
  The nongeneric equivalent packages may, but need 
not, be actual instantiations of the generic package for the appropriate 
predefined type.
  Although many operations are defined in terms of 
operations from numerics.generic_complex_types, they need not be implemented 
by calling those operations provided that the effect is the same. 
Implementation Advice
  Implementations should implement the Solve and 
Inverse functions using established techniques. Implementations are recommended 
to refine the result by performing an iteration on the residuals; if 
this is done, then it should be documented. 
  It is not the intention that any special provision 
should be made to determine whether a matrix is ill-conditioned or not. 
The naturally occurring overflow (including division by zero) which will 
result from executing these functions with an ill-conditioned matrix 
and thus raise Constraint_Error is sufficient. 
  The test that a matrix is Hermitian should use 
the equality operator to compare the real components and negation followed 
by equality to compare the imaginary components (see 
G.2.1). 
 
    An implementation should minimize the circumstances 
under which the algorithm used for Eigenvalues and Eigensystem fails 
to converge. 
  Implementations should not perform operations on 
mixed complex and real operands by first converting the real operand 
to complex. See 
G.1.1. 
 
Ada 2005 and 2012 Editions sponsored in part by Ada-Europe